

POWER SCHOTTKY RECTIFIER

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW FORWARD VOLTAGE DROP
- HIGH AVALANCHE CAPABILITY
- LOW THERMAL RESISTANCE
- SURFACE MOUNTED DEVICE

DESCRIPTION

Single chip schottky rectifier suited for switchmode power supply and high frequency DC to DC converters.

Packaged in SOD 15, this device is intended for surface mounting and use in low voltage, high frequency inverters, free wheeling and polarity protection applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit
I _{F(RMS)}	RMS Forward Current		10	А
I _{F(AV)}	Average Forward Current	$T_L = 105^{\circ}C$ $\delta = 0.5$	3	А
I _{FSM}	Surge Non Repetitive Forward Current	Tp = 10 ms Sinusoidal	75	A
I _{RRM}	Peak Repetitive Reverse Current	Tp = 2 μs F = 1KHz	1	А
Tstg Tj	Storage and Junction Temperature Range		- 65 to + 150 - 65 to + 150	°C
dV/dt	Critical Rate of Rise of Reverse Voltage		1000	V/μs

Symbol	Parameter		STPS		Unit
		320S	330S	340S	
V_{RRM}	Repetitive Peak Reverse Voltage	20	30	40	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{TH (j-l)}	Junction-leads	20	°C/W

March 1992 1/5

STPS320S/STPS330S/STPS340S

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Tj = 25°C	$V_R = V_{RRM}$			100	μА
	Tj = 125°C				10	mA
V _F **	Tj = 125°C	I _F = 6 A			0.72	V
	Tj = 125°C	I _F = 3 A			0.57	
	Tj = 25°C	I _F = 6 A			0.84	

Pulse test : * tp = 5 ms, duty cycle < 2 % ** tp = 380 μ s, duty cycle < 2%

To evaluate the conduction losses use the following equation : P = $0.42 \times I_{F(AV)} + 0.050 \ I_F^2_{(RMS)}$

Figure 1 : Average forward power dissipation versus average forward current.

PF(av)(W) 3.5 3 δ =0.1 δ =0.2 δ =0.5 δ =1 2.5 δ=0.05 2 1.5 0.5 IF(av)(A) 0 0.5 1.5 2 2.5 3 3.5

Figure 3 : Non repetitive surge peak forward current versus overload duration.
(Maximum values)

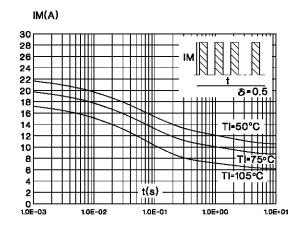
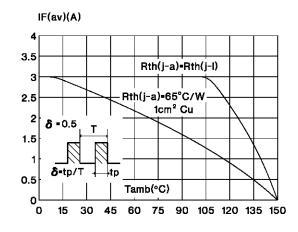



Figure 2 : Average current versus ambient temperature.
(duty cycle : 0.5)

Figure 4: Relative variation of thermal transient impedance junction to lead versus pulse duration.

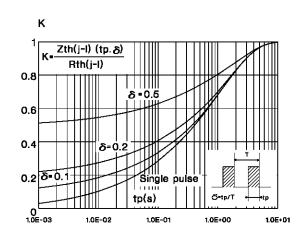


Figure 5 : Reverse leakage current versus reverse voltage applied.
(Typical values)

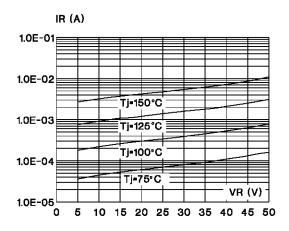
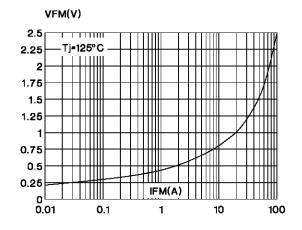
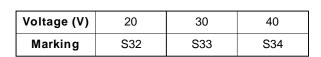
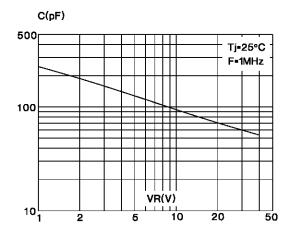
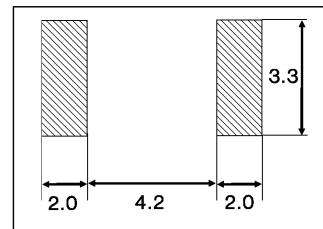




Figure 7 : Forward voltage drop versus forward current.

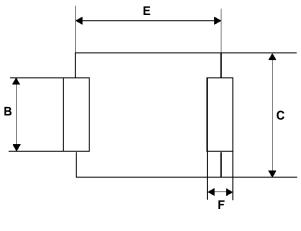
(Maximum values)

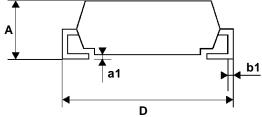


Laser marking Logo indicates cathode


Figure 6 : Junction capacitance versus reverse voltage applied.

(Typical values)




PACKAGE MECHANICAL DATA

SOD15

	DIMENSIONS				
REF.	Millim	neters	Inches		
	Min.	Max.	Min.	Max.	
Α	2.50	3.10	0.098	0.122	
a1	0.05	0.20	0.002	0.008	
В	2.90	3.10	0.114	0.122	
b1	0.29	0.32	0.011	0.012	
С	4.80	5.20	0.189	0.204	
D	7.60	8.00	0.299	0.315	
Е	6.30	6.60	0.225	0.259	
F	1.30	1.70	0.051	0.056	

Laser Marking Logo indicated cathode

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

TURBOSWITCH, TRANSIL, TRISIL, SNUBBERLESS are Trademarks of SGS-THOMSON Microelectronics.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

